
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Service Not Good Enough

QThe Delphi online help and
documentation on the

subject of DDE says that a Delphi
DDE server application’s service
name, or application name, will
match that of the project without
the extension. Can this be altered
(ReportSmith does not conform to
this rule)?

AWell, ReportSmith is not
written in Delphi (perhaps it

wouldn’t be so big and slow if it
were), but that’s not the point.
Indeed this rule can be altered. The
DDE components make use of a
component called DDEMgr, of the un-
documented component type
TDDEMgr, which has a property
called AppName, used to define the
DDE service. Fortunately, DDEMgr is
declared in the interface section of
the DDEMan unit, so something like:

DDEMgr.AppName :=
 ’NewDDEServiceName’;

in your server form’s OnCreate
handler should do the trick.

Combo Woes

QThe TDBLookupCombo.OnClick
event doesn’t fire if I click on

the drop down list. However
OnClick does work in this way for
the other combo box components.
What’s wrong with it?

AThe TDBLookupCombo is not a
real combo box, but is made

up from, among other things, an
edit box and a list box. This is also
why a TDBLookupCombo on a form
with a FormStyle of fsStayOnTop
doesn’t show its drop down part at
all: the list box used by the VCL
stays behind the stay-on-top form.

Although the list box part of this
fake combo does have an OnClick
event handler, it is only used to
determine when to hide the
list box.

We can improve the situation by
extending the functionality of this
listbox’s OnClick event and causing
it to also call the TDBComboBox’s On-
Click in a new component. Listing
1 shows how. The constructor for
TNewDBLookup searches through its
own component list until it finds a
TPopupGrid (a class based on a
TDBLookupList), then replaces its

OnClick handler with a new
method, saving the old one first.
The new handler calls the old one,
then calls the previously uncalled
OnClick handler.

Microsoft Products
And Floating Point

QI have a DLL written in a
Microsoft C compiler which

exports a function returning a
Double. When I try and call it, I don’t
get the values I expect. Is there a
compatibility problem between
Borland and Microsoft products?

AThat’s exactly what the
problem is, and it usually

shows up with functions that
return floating point values. For
example, a Visual Basic application
will have trouble getting a function
in a Delphi DLL to return a floating
point value (hereafter referred to
as a float for brevity), as will an
Excel or Microsoft C application.

Regardless of what compiler
options are used, Borland prod-
ucts cause functions to return
floats on the NDP (Numeric Data
Processor, or 80x87 co-processor)
stack.

unit Newcomb;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls, DBLookup;
type
 TNewDBLookup = class(TDBLookupCombo)
 private
 FOldGridClick: TNotifyEvent;
 protected
 procedure NewGridClick(Sender: TObject);
 public
 constructor Create(AOwner: TComponent); override;
 end;
procedure Register;
implementation

constructor TNewDBLookup.Create(AOwner: TComponent);
var Loop: Word;
begin
 inherited Create(AOwner);
 for Loop := 0 to Pred(ComponentCount) do

 if Components[Loop] is TPopupGrid then
 with Components[Loop] as TPopupGrid do begin
 FOldGridClick := OnClick;
 OnClick := NewGridClick;
 Break;
 end;
end;
procedure TNewDBLookup.NewGridClick(Sender: TObject);
var FOnClick: TNotifyEvent;
begin
 if Assigned(FOldGridClick) then
 FOldGridClick(Self);
 FOnClick := OnClick;
 if Assigned(FOnClick) then
 FOnClick(Self);
end;
procedure Register;
begin
 RegisterComponents(’Samples’, [TNewDBLookup]);
end;
end.

➤ Listing 1

56 The Delphi Magazine Issue 6

Microsoft products don’t always
work like this and so, generally, the
advice is to make cross-vendor
applications work with functions
that return pointers to floats
instead, since pointers are
returned the same by both Borland
and Microsoft compilers. Some-
times it is not possible to do this as
the EXE or DLL may be a commer-
cially purchased item whose
source is not available, and so we
need a better solution, which of
course will rely on knowing what
Microsoft compilers do when they
don’t use the NDP stack. We’ll cater
for both possibilities, where you
may be writing the DLL in Delphi
for an MSC app, or an app in Delphi
for an MSC DLL.

When compiled with Pascal
calling conventions, Microsoft C
code that calls a function returning
a float declares a hidden local
variable, and passes the offset as
an extra parameter to the subrou-
tine. The subroutine stores the
intended return value in this
argument, whose address it builds
up from the stack segment and the
given offset. What the routine

actually returns is the address of
this variable. At least that is
according to MS documentation: I
have found that it only returns the
offset, but it makes little difference
in practice.

When compiled with C calling
conventions, MSC code returns
Extended values on the NDP stack,
as does Delphi, but Singles and
Doubles are returned via a global
variable. The function stores the
return value in a variable (which
happens to be called __fac, the
floating point accumulator) and
returns its address.

If we consider an MSC written
application that can call a DLL
which defines routines that are
supposed to look like Listing 2, we
would actually need to implement
them as shown in Listing 3.

If we now take the other angle, if
we have an MSC written DLL, that

library Dbldll;
uses WinProcs;

function TestFloatPascal(

 D: Double): Double; export;
begin
 Result := D;
end;

function TestFloatCDecl(

 D: Double): Double; cdecl;

 export;
begin
 Result := D;
end;
exports
 TestFloatPascal index 2,
 TestFloatCDecl index 3;
begin
end.

➤ Listing 2

library Dbldll;
uses WinProcs;
type PDouble = ^Double;
var __fac: Double; { Global variable for floating point operations }

function TestFloatPascal(D: Double; Offset: Word): PDouble; export;
begin
 Result := Ptr(SSeg, Offset); { Return address of result on stack }
 Result^ := D; { Store result in stack at given offset }
end;

{ If the parameter is an Extended (long double), this change won’t be
 necessary - MSC returns it in the same way as Delphi - on the NDP stack }
function TestFloatCDecl(D: Double): PDouble; cdecl; export;
begin
 Result := @__fac; { Return address of result in DLL data segment }
 Result^ := D; { Store result in DLL variable }
end;
exports
 TestFloatPascal index 2,
 TestFloatCDecl index 3;
begin
end.

➤ Listing 3

program Msapp;
uses SysUtils, Dialogs;
procedure WinMain;
begin
 ShowMessage(FloatToStr(
 TestFloatPascal(2.5)));
 ShowMessage(FloatToStr(
 TestFloatCDecl(2.5)));
end;
begin
 WinMain;
end.

➤ Listing 4

program Msapp;
uses SysUtils, Dialogs;
type PDouble = ^Double;

function TestFloatPascal(D: Double; Offset: Word): PDouble;
 far; external ’DBLDLL’ index 2;

function TestFloatCDecl(D: Double): PDouble; cdecl;
 far; external ’DBLDLL’ index 3;

procedure WinMain;
var Temp: Double;
begin
 ShowMessage(FloatToStr(TestFloatPascal(2.5, Ofs(Temp))^));
 ShowMessage(FloatToStr(TestFloatCDecl(2.5)^));
end;

begin
 WinMain;
end.

➤ Listing 5

we are told contains effectively
what Listing 2 shows, to call it we
might normally expect something
like Listing 4, but instead would
have to use what’s in Listing 5.

So you can check these solutions
out, I have included various files on
this month’s disk. Firstly there are
the source and binaries for an MSC
generated EXE and DLL called
MSAPP.EXE and DBLDLL.DLL. Also
there are projects for the two
Delphi plug-in replacements as
MSAPP.DPR and DBLDLL.DPR.
They have conditional compilation
directives to cater for Borland or
MS-style code generation, but are
set up for MS by default.

Pointerless DLL Access

QI am interfacing to a C DLL –
I have to call a routine and

define a routine to be called

February 1996 The Delphi Magazine 57

compatible with some C proto-
types, but am being forced to use
the pointer symbols ^ and @ and
pointer types (see Listing 6). I
thought Delphi allowed us to avoid
pointers in most cases?

ATake advantage of the pass-
by-reference modifiers var

and const. If you will be modifying
the value, use var, if not use const.
Passing by reference is imple-
mented by passing the address of
variables – in other words, point-
ers (but we don’t have to use
pointer notation). See Listing 7.

Setting Properties En Masse

QIf I make a TList or array of
components including, for

example, a button and a menu item,
I am unable to easily set certain
properties such as Enabled or
Caption without checking the types
in a conditional statement. It seems
that some similarly named proper-
ties have not been added in a
common ancestor and so live at
different offsets in memory, and
GPFs prevail without full checks. Is
there a way to simplify this?

AWe can take advantage of the
run-time type information

(RTTI) stored in the objects and
some RTTI-accessing functions in
the undocumented TypInfo unit.

There are two applications on
this issue’s disk to demonstrate
this. The first, MANY.DPR, defines
a routine (written by Roy Nelson at
Borland) to set an explicit
property, Enabled, to a given value.
The routine ActivateControls is
shown in Listing 8, followed by an
example of how to call it.

A more generic routine (based
on Roy’s code) to set a given
named ordinal, floating point or
string property to any value, is
used in MANY2.DPR and given in
Listing 9, with an example call.

Tracing SQL

QIs there a way to see the SQL
commands that get sent to

my database server when using a
TTable component?

{ C routine declarations:
 void _pascal FunctionToCall(unsigned int *Param);
 void _pascal FunctionToBeCalled(long double *Param); }
type PExtended = ^Extended;
var W: Word;
 E: Extended;
procedure FunctionToCall(Param: PWord); external ’CDLL’;

procedure Button1Click(Sender: TObject);
begin
 W := StrToInt(Edit1.Text);
 FunctionToCall(@W);
end;

procedure FunctionToBeCalled(Param: PExtended); export;
begin
 E := Param^;
end;

➤ Listing 6

{ C routine declarations: see Listing 6 }
var W: Word;
 E: Extended;
procedure FunctionToCall(var Param: Word); external ’CDLL’;

procedure Button1Click(Sender: TObject);
begin
 W := StrToInt(Edit1.Text);
 FunctionToCall(W);
end;

procedure FunctionToBeCalled(const Param: Extended); export;
begin
 E := Param;
end;

➤ Listing 7

procedure ActivateControls(SetTo: Boolean;
 const ControlsToChange: array of const);
var I: integer;
 PropInfo: PPropInfo;
begin
 for I := Low(ControlsToChange) to High(ControlsToChange) do
 with TVarRec(ControlsToChange[I]) do
 { Sanity check to see if it is an object }
 if VType = vtObject then begin
 PropInfo := GetPropInfo(VObject.ClassInfo, ’Enabled’);
 if Assigned(PropInfo) then
 SetOrdProp(VObject, PropInfo, LongInt(SetTo));
 end;
end;
{...}
ActivateControls(False, [Button1, Edit1, About1]);

➤ Listing 8

AIndeed there is. A peculiarly
undocumented setting in

WIN.INI will cause Windows debug
strings to be generated each time
the BDE performs an operation on
an SQL database. In fact the setting
is interpreted by each of the SQL
Link drivers and the ODBC socket
(which used to be known as the
Idapter).

Add an SQLTrace entry to the
IDAPI section in WIN.INI. The value
should be negative (-1) to see all
operations with the SQL target
(SQL preparations, executions,
errors, statements, connections,

BLOb I/O and miscellaneous), or
positive (1) to see just the
SQL expressions (SQL prepare
operations). A zero turns the trace
off.

[IDAPI]
DLLPATH=C:\IDAPI
CONFIGFILE01=C:\IDAPI\IDAPI.CFG
SQLTRACE=1

Sample output from the notifica-
tion handler in my Callbacks in
Windows and The BDE: Part 3
article from this issue (which
traps, among other things,

58 The Delphi Magazine Issue 6

Windows debug messages) is
shown in Figure 1, where SQLTrace
has been set to 1.

Symbol File Error

QWhen I open some projects I
get an “Error reading symbol

file” message. How can I get rid of
it, and why does it come up?

AThere is an option in the
Autosave options: group of

the Options|Environment dialog on
the Preferences page in the Delphi
IDE, allowing you to save the
desktop. This is designed to allow
the layout of windows and content
of history lists etc to be saved for
the next time you open a project.
When the option is checked, the
Desktop contents: radio buttons on
the left come into play. Most
enlightened people will opt for
Desktop only (save a .DSK file), but
the default is Desktop and Symbols
(save a .DSK and a .DSM file).

The .DSK file (about 1kb) is a
Windows .INI file with sections
storing information about the
environment. The .DSM file
(usually at least 500k) is a dump of
the symbol table Delphi generates
in memory when compiling your
project. If the symbols are saved,
when you reload your project you
can use the Object Browser etc
without being forced to re-compile
your project first. In short, a few
seconds benefit (well, not long
anyway) costs you half a megabyte
per project. If a .DSM file is being
saved, a section like this is added
to the .DSK file.

[Symbols]

SymbolFile=C:\DELPHI\PROJECT1.DSM

ExecName=C:\DELPHI\PROJECT1.EXE

If you move a project to a new
directory, or take projects from
other people, the chances are that
the .DSM file will not be kept, but
often the small .DSK file is. When
Delphi opens the project and sees
the Symbols section in the .DSK file,
it tries to open the .DSM file. Any
problem, like the file not being
there, gives the error. The easiest
solution is to delete the .DSK file.

Credit Where Credit’s Due

QI’ve heard of the 4 Delphi
About dialog Easter Eggs.

Does the product have any more
hidden goodies?

AIndeed it does. As you say
the Delphi About box (Alt-H,

A) has four undocumented key
sequences. Hold down the Alt key
and type VERSION, DEVELOPERS,
TEAM or AND (the latter only works
with 256 or more colour screen
drivers).

The About box in ReportSmith
(including both the run-time and
Data Dictionary applications) can
yield some credits by Ctrl-clicking
the icon with your right mouse
button 16 times (do it slowly or
your clicks will be interpreted as
double-clicks – if the icon flashes
on clicks 7 to 16, then you are doing
it correctly.

The BDE Config’s About box
changes with Alt-S, WinSight’s

About box reacts to Alt-I,
WinSpector doesn’t have an About
box, but if you restore it from its
natural iconic state, Alt-I also does
something. Database Desktop’s
About box gives an uninteresting
IDAPI version number with Alt-I (or
even just I). Shift-Z gives the
normal credits. Is that enough to be
getting along with?

Incidentally, a little bird told me
a story about the keystrokes for
the winking snap of the Danish
Delphi chief architect Anders
Hejlsberg pictured in a swimming
pool. Ducks sit in water; Danes
refer to Donald Duck as Anders
And; to see Anders, you type AND.

Acknowledgements
Thanks to Roy Nelson of Borland
for the cunning property changing
routine, and to Steve Axtell from
Borland for the lookup list and
informative SQLTrace tips.

procedure ChangeControls(const Prop: String;
 const SetTo, ControlsToChange: array of const);
var
 I: integer;
 PropInfo: PPropInfo;
 Obj: TObject;
begin
 for I := Low(ControlsToChange) to High(ControlsToChange) do
 if TVarRec(ControlsToChange[I]).VType = vtObject then begin
 Obj := TVarRec(ControlsToChange[I]).VObject;
 PropInfo := GetPropInfo(Obj.ClassInfo, Prop);
 if Assigned(PropInfo) then
 with TVarRec(SetTo[Low(SetTo)]) do
 case VType of
 vtInteger, vtBoolean, vtChar:
 SetOrdProp(Obj, PropInfo, VInteger);
 vtExtended:
 SetFloatProp(Obj, PropInfo, VExtended^);
 vtString:
 SetStrProp(Obj, PropInfo, VString^);
 end;
 end;
end;
{...}
ChangeControls(’Enabled’, [False], [Button1, Edit1, About1]);

➤ Listing 9

➤ Figure 1

February 1996 The Delphi Magazine 59

	Service Not Good Enough
	Combo Woes
	Microsoft Products and Floating Point
	Pointerless DLL Access
	Setting Properties En Masses
	Tracing SQL
	Symbol File Error
	Credit Where Credit's Due
	Acknowledgements

